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Abstract
BACKGROUND:  Observat ional  s tudies  and some 
randomized controlled trials have suggested that nutritional 
supplementation could be a possible intervention pathway to 
prevent cognitive decline and Alzheimer’s disease (AD). As 
measuring amyloid-β and tau pathophysiology by positron 
emission tomography (PET) or cerebrospinal fluid (CSF) 
analyses may be perceived as complex, plasma versions of such 
biomarkers have emerged as more accessible alternatives with 
comparable capacity of predicting cognitive impairment.
OBJECTIVES: This study aimed to evaluate the effect of a 1-year 
intervention with a nutritional blend on plasma p-tau181 and 
glial fibrillary acidic protein (GFAP) levels in community-
dwelling older adults. Effects were further assessed in 
exploratory analyses within sub-cohorts stratified according to 
p-tau status (with the third tertile considered as high: ≥15.1 pg/
mL) and to apolipoprotein E (APOE) ε4 allele status. 
METHODS: A total of 289 participants ≥70 years (56.4% female, 
mean age 78.1 years, SD=4.7) of the randomized, double-blind, 
multicenter, placebo-controlled Nolan trial had their plasma 
p-tau181 assessed, and daily took either a nutritional blend 
(composed of thiamin, riboflavin, niacin, pantothenic acid, 
pyridoxine, biotin, folic acid, cobalamin, vitamin E, vitamin C, 
vitamin D, choline, selenium, citrulline, eicosapentaenoic acid 
– EPA, and docosahexaenoic acid – DHA) or placebo for 1 year. 
RESULTS: After 1-year, both groups presented a significant 
increase in plasma p-tau181 and GFAP values, with no effect 
of the intervention (p-tau181 between-group difference: 
0.27pg/mL, 95%CI: -0.95, 1.48; p=0.665; GFAP between-group 
difference: -3.28 pg/mL, 95%CI: -17.25, 10.69; p=0.644). P-tau- 
and APOE ε4-stratified analyses provided similar findings. 
CONCLUSIONS: In community-dwelling older adults, we 
observed an increase in plasma p-tau181 and GFAP levels that 
was not different between the supplementation groups after one 
year.

Key words: p-tau, cognitive decline, Alzheimer, nutrition, clinical 
trials.

Introduction

In a worldwide context of increasing life expectancy 
and Alzheimer’s disease (AD) burden, identifying 
lifestyle factors that promote brain health is of 

high relevancy, and may help preventing or postponing 
cognitive decline, and consequently increasing quality 
of life. Observational studies associating nutritional 
factors to better cognitive function have suggested 
that nutritional supplementation could be a possible 
intervention pathway to prevent cognitive decline and 
Alzheimer’s disease (AD) (1-7). While ambiguous results 
have been found in trials supplementing single nutrients 
(8), other studies evaluating the combination of several 
nutrients have suggested that this might be a better 
strategy (9-13). The Nolan Study was then designed to 
test this novel approach, through offering a nutritional 
blend (NB) developed to serve as a source of multiple 
nutrients to community dwelling older adults, and 
previously tested on cats (12) and dogs (13). In spite of 
not being able to affect cognitive function, as measured by 
clinical tests (except for a positive effect on the Cognitive 
Function Instrument – CFI study partner score), the 
nutritional blend positively improved two biomarkers 
that are believed to underlie an attenuation in cognitive 
decline during aging (14-16): plasma homocysteine (Hcy) 
levels decreased and erythrocyte omega-3 index increased 
after the 1-year intervention (17).   

AD is a serious neurological disorder characterized 
by the gradual accumulation of amyloid-β (Aβ) 
plaques in the brain, which promotes neuronal toxicity, 
tau phosphorylation and aggregation, and neuronal 
death (18, 19). As measuring Aβ and tau pathology in 
the brain by positron emission tomography (PET) is 
expensive and have limited availability, and cerebrospinal 
fluid (CSF) collection may be regarded as complex to 
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perform, plasma versions of such biomarkers have 
emerged as alternatives with comparable capacity of 
predicting cognitive impairment (20-23). Plasma tau 
phosphorylated at threonine 181 (p-tau181) has been 
identified as a predictor of cognitive decline (24) and of 
tau accumulation in the brain (25), with high performance 
to identify AD, while levels are normal in other dementias 
(26, 27). High p-tau181 levels were also found in the 
very early stages of the disease, even preclinically (28), 
and correlated tightly with other p-tau variants, such as 
p-tau231 and p-tau217 (29). Glial fibrillary acidic protein 
(GFAP) is a cytoskeletal protein commonly expressed in 
astroglia, which has also been associated with cognitive 
decline, amyloidosis and AD (30-33). Thus, it is of great 
interest to investigate whether the supplementation with 
the nutritional blend would be able to promote changes 
on plasma p-tau181 and on GFAP levels. Moreover, 
considering the important impact of the apolipoprotein 
E (APOE) ε4 allele on AD risk (34), subgroup analyses 

according to APOE ε4 status would also bring additional 
elements to the field.

This study aimed to evaluate the effect of a 1-year 
intervention with a nutritional blend composed of 
several nutrients (thiamin, riboflavin, niacin, pantothenic 
acid, pyridoxine, biotin, folic acid, cobalamin, vitamin 
E, vitamin C, vitamin D, choline, selenium, citrulline, 
eicosapentaenoic acid – EPA, and docosahexaenoic acid 
– DHA) on plasma p-tau181 and GFAP levels among 
community-dwelling older adults. Effects were further 
assessed in exploratory analyses within sub-cohorts 
stratified according to p-tau181 status (low vs. high) and 
to APOE ε4 status (carriers vs. non-carriers).

Materials and Methods

Study design and population

The Nolan Study is a double-blind, multicenter, 
randomized, placebo-controlled trial (RCT) conducted 

Figure 1. Flow diagram describing the Nolan Study population of the present study
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in 18 centers in France. Participants were community-
dwelling older adults, recruited from December 2016 to 
January 2018. Follow-up ended in February 2019. Major 
inclusion criteria comprised: being ≥70 years old; self-
reporting subjective memory complaints; and having a 
study partner to participate as a source of information. 
Major exclusion criteria were: taking vitamin-B 
supplements in the past three months; taking ω-3 PUFA 
supplements containing >200 mg of DHA/day over six 
months before inclusion; basic activities of daily living 
(ADL) score <4; Mini-Mental State Examination (MMSE) 
score <24; confirmed diagnosis of dementia. Detailed 
inclusion and exclusion criteria has been described 
elsewhere (17). Treatment with anticoagulants or platelet 
aggregation inhibitors were accepted, but carefully 
monitored, considering that ω-3 PUFA can affect platelet 
function.

Out of the 362 participants who joined the Nolan study, 
57 dropped-out during follow-up (n=26 intervention, 
n=31 control; mean drop-out rate = 15.7%), totaling 305 
participants at the end of the trial (n=154 intervention, 
n=151 control). From those, 289 had their plasma p-tau181 
and GFAP measured, and were then included in this 
study. However, six aberrant values for GFAP at the 
12-month visit were considered as outliers, and were not 
included in the analyses. A detailed description of the 
sample formation is provided in Figure 1.

Ethical disclosure

The Nolan Study was registered at www.clinicaltrials.
gov (protocol NCT03080675) and approved by the 
Advisory Committee for Protection of Persons South 
West and Overseas II (CPP SOOM II) and by the French 
Agency for the Safety of Medicines and Health Products 
(ANSM). All participants signed an informed consent.

Randomization and masking

For the original main analysis of the Nolan Study, 
participants were randomly assigned (1:1) to either the 
intervention group (receiving the supplementation with 
the NB) or the control group (receiving placebo). Details 
are given in Supplementary materials.

Intervention

Participants allocated in the intervention group were 
instructed to take a nutritional blend daily, for one year. 
The blend was characterized by two soft gel capsules 
(with 775mg filling each) and by one powdered sachet 
of ≈15g, to be mixed in 120mL of cold water. In the 
meanwhile, participants in the control group took placebo 
equivalent volumes. Total composition of a daily dose of 
the NB consisted of 50mg of thiamin, 15 mg of riboflavin, 
25mg of niacin, 23mg of pantothenic acid, 18mg of 
pyridoxine, 0.15mg of biotin, 0.4mg of folic acid, 0.5mg 

of cobalamin, 82.6mg of vitamin E, 500mg of vitamin C, 
15μg of VD, 85mg of choline, 80μg of selenium, 3g of 
citrulline, 700mg of EPA and 770mg of DHA. Additional 
information about capsules and powered drink 
composition is presented in Supplementary materials.

In addition to a total of six in-person visits over 
the follow-up (screening, practice, baseline, 1 month, 
6 months and 12 months), phone calls were set up 
between visits at 3-month intervals to follow-up product 
compliance, adverse events and concomitant medication 
intake. Although dietary restrictions have not been made, 
participants were instructed not to take any additional 
supplements containing B-vitamins, DHA and/or EPA.

Outcomes: plasma p-tau181 and GFAP

Plasma samples were collected at baseline, 6 months, 
and 12 months of follow-up, but p-tau181 and GFAP 
were assessed only at baseline and 12 months. Plasma 
p-tau181 concentration was measured in the Clinical 
Neurochemistry Laboratory, University of Gothenburg 
(Mölndal, Sweden), using an in-house Simoa method 
based on the AT270 (specific for the threonine-181 
phosphorylation site) and Tau12 (N-terminal epitope 
6-18 on human tau protein), as described previously in 
detail (26). Plasma GFAP concentration was measured 
using the commercially available GFAP Discovery assay 
(Quanterix, Billerica, MA). All measurements were 
performed on an HD-X Analyzer (Quanterix, Billerica, 
MA) in one round of experiments with baseline and 
follow-up samples from the same individual side-by-
side on the assay plates by board-certified laboratory 
technicians who were blinded to clinical information. 
Intra-assay coefficients of variation were below 10%. 

To define subgroups of participants with normal 
(lower) and high p-tau status, and in the absence of a 
consensual range in literature to determine it, tertiles 
were used, with participants in the first and second 
tertiles considered as low (<15.1 pg/mL) and those in the 
third tertile considered as high (≥15.1 pg/mL).

APOE ε4 allele status and other study variables

The effect of intervention on plasma p-tau181 was 
also investigated in exploratory analysis according to 
the APOE ε4 allele status (carrier vs. non-carrier). In 
addition, differences in plasma p-tau181 at baseline were 
investigated according to sex (female, male), age ranges 
(70 to 74 years, 75 to 79 years, 80 to 84 years, ≥85 years), 
education (≤7 years, 8 to 9 years, ≥10 years), body mass 
index (BMI) (<21 kg/m2, 21 to 24.9 kg/m2, 25 to 29.9 kg/
m2, ≥30 kg/m2), Clinical Dementia Rating (CDR) score 
(0, 0.5) and amyloid status assessed by positron emission 
tomography (PET) (positive, negative).
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Statistical analysis
Means (SD – standard deviation) and frequencies 

(percentages) were used to characterize the studied 
population. Baseline characteristics of participants 
according to allocation groups were compared by Chi-
Square test or Student’s t-test. Differences in plasma 
p-tau181 according to participants’ characteristics 
were tested using ANOVA or Student’s T-test. Efficacy 
analyses were done using data of all randomly 
assigned participants with plasma p-tau181 and GFAP 
measurements who completed the 12-month follow-
up. Linear regression models adjusted on baseline data 
were performed in order to determine the effect of 
intervention, compared to placebo, on plasma p-tau181 
and GFAP levels, including all available data (baseline 
and 12 months). The following fixed effects were included 
in the model: baseline value, intervention group, time 
(continuous variable), and interaction between group 
and time. Similarly, exploratory analysis according to 
plasma p-tau181 status and to APOE ε4 allele status 
was performed. The Statistical Analysis Software (SAS) 
version 9.4 (Cary, NC, USA) was used, with statistical 
significance set as 5%.

Results

Characterization of the sample

Table 1 presents baseline characteristics of participants 
according to randomized groups. The study sample of 289 
Nolan participants had mean age 78.1 years (SD=4.7) and 
was composed of 56.4% female (n=163). Plasma p-tau181 
did not differ between treatment groups at baseline 
(intervention: 14.1 pg/mL, SD=6.0 vs. control: 13.3 pg/
mL, SD=5.6, p=0.262), but baseline plasma GFAP was 
higher in the intervention group (intervention: 194.4 pg/
mL, SD=87.6 vs. control: 171.0 pg/mL, SD=67.7, p=0.013).

Differences in plasma p-tau181 were observed 
according to age range, sex, APOE ε4 status, CDR score 
and the presence of amyloid plaques assessed by PET 
scan, with higher plasma p-tau181 values observed 
among subjects ≥85 years old (p=0.002), male (p=0.023), 
APOE ε4 carriers (p=0.002), with CDR score 0.5 (p=0.001) 
and amyloid-positive (p=0.046). No differences were 
observed according to education and BMI. For plasma 
GFAP, differences were observed according to age range, 
sex, BMI, and CDR score, with higher GFAP observed 
among subjects ≥85 years old (p=0.001), female (p=0.005), 

Table 1. Baseline characteristics of participants of the Nolan Study with plasma p-tau181 assessment
 
 

Total n = 289 Nutritional blend n = 144 Placebo n = 145 p-value

mean (SD)* mean (SD)* mean (SD)*

Sex (female) 163 (56.4%) 83 (57.6%) 80 (55.2%) 0.673a

Age (years) 78.1 (4.7) 78.3 (4.8) 77.9 (4.7) 0.435b

Age ranges 0.769a

    70 to 74 years 70 (24.2%) 32 (22.2%) 38 (26.2%)
    75 to 79 years 111 (38.4%) 56 (38.9%) 55 (37.9%)
    80 to 84 years 82 (28.4%) 41 (28.5%) 41 (28.3%)
    ≥85 years 26 (9.0%) 15 (10.4%) 11 (7.6%)
Education (n = 288) 0.831a

    ≤ 7 years 24 (8.3%) 13 (9.0%) 11 (7.6%)
    8 to 9 years 45 (15.6%) 21 (14.6%) 24 (16.7%)
    ≥10 years 219 (76.0%) 110 (76.4%) 109 (75.7%)
Body mass index (kg/m²) 26.2 (4.0) 26.2 (3.8) 26.3 (4.1) 0.909b

    <21 kg/m² 23 (8.0%) 8 (5.6%) 15 (10.3%) 0.346a

    21 to 24.9 kg/m² 100 (34.6%) 55 (38.2%) 45 (31.0%)
    25 to 29.9 kg/m² 115 (39.8%) 57 (39.6%) 58 (40.0%)
    ≥30 kg/m² 51 (17.6%) 24 (16.7%) 27 (18.6%)
APOE ε4 status (n = 275) 0.279a

    ε4 carrier 68 (24.7%) 30 (21.9%) 38 (27.5%)
    ε4 non-carrier 207 (75.3%) 107 (78.1%) 100 (72.5%)
Plasma p-tau181 (pg/mL) 13.7 (5.8) 14.1 (6.0) 13.3 (5.6) 0.262b

Plasma GFAP (pg/mL) (n = 283) 182.7 (79.0) 194.4 (87.6) 171.0 (67.7) 0.013c

APOE, apolipoprotein E gene; GFAP, glial fibrillary acidic protein; p-tau181, phosphorylated tau at threonine 181; SD, standard deviation; *Except where indicated other. 
a Chi-Square test; b Equal variance two sample t-test, c Unequal variance two sample t-test.
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with BMI <21 kg/m² (p<0.0001) and with CDR score 
0.5 (p=0.023). No differences were observed according 
to education, APOE ε4 status and amyloid status 
(determined by PET) (Table 2). Participants of the present 
study did not differ in baseline characteristics from those 
participants of Nolan who were not included due to the 
absence of the investigated biomarkers (Table 3).

Effect of intervention on plasma p-tau181 and 
GFAP

After 1 year, plasma p-tau181 significantly increased 
in both groups, with no differences between participants 
who received the nutritional blend or those who received 
placebo (between-group difference: 0.27 pg/mL, 95%CI: 
-0.95, 1.48; p=0.665). Similar findings were observed for 
plasma GFAP, increasing in both groups over time and 

with no effect of intervention (between-group difference: 
-3.28 pg/mL, 95%CI: -17.25, 10.69; p=0.644) (Table 4).

Exploratory analysis according to APOE ε4 
allele status

The allele APOE ε4 was identified among 24.7% of 
the sample (n=68), and did not differ between groups 
(intervention: 21.9% vs. control: 27.5%; p=0.279) (Table 1). 
Additional analyses according to APOE ε4 status mostly 
provided similar findings to the observed among the 
total studied population, with no differences in plasma 
p-tau181 and GFAP changes between groups (difference 
in between-group differences over time for APOE ε4 
carriers vs. non-carriers: p-tau181: 2.28 pg/mL, 95%CI: 
-0.58, 5.13; p=0.118; GFAP: 3.16 pg/mL, 95%CI: -28.24, 
34.56; p=0.843) (Table 5).

Table 2. Differences in plasma p-tau181 and GFAP according to participants’ characteristics
 
 

n Plasma p-tau181 (pg/mL) p-value n Plasma GFAP (pg/mL) p-value

mean (SD) mean (SD)

Sex 0.023a 0.005c

    Female 163 13.0 (5.5) 158 194.2 (85.5)
    Male 126 14.6 (6.1) 125 168.3 (67.6)
Age 0.002b 0.001b

    70 to 74 years 70 11.8 (4.3) 69 151.1 (50.1)
    75 to 79 years 111 14.1 (5.4) 109 187.3 (76.6)
    80 to 84 years 82 13.9 (6.8) 79 194.8 (97.4)
    ≥85 years 26 16.6 (5.6) 26 210.9 (67.5)
Education (n=288) 0.440b 0.231b

    ≤7 years 24 14.6 (5.3) 23 190.7 (64.4)
    8 to 9 years 45 14.4 (4.7) 44 200.2 (62.9)
    ≥10 years 219 13.5 (6.0) 215 178.7 (83.0)
Body mass index 0.121b <0.0001b

    <21 kg/m² 23 16.3 (6.3) 22 238.2 (106.6)
    21 to 24.9 kg/m² 100 13.2 (5.7) 96 194.5 (85.0)
    ≤ 25 to 29.9 kg/m² 115 13.8 (5.9) 115 174.6 (70.8)
    ≥30 kg/m² 51 13.2 (5.2) 50 154.4 (52.5)
APOE ε4 status (n=275) 0.002a 0.312a

    ε4 carrier 68 15.4 (6.1) 68 191.2 (75.2)
    ε4 non-carrier 207 13.0 (5.3) 202 179.9 (80.6)
CDR score 0.001a 0.023c

    0 122 12.4 (5.7) 119 170.5 (70.0)
    0.5 167 14.7 (5.7) 164 191.6 (84.1)
Amyloid status (PET) (n=46) 0.046a 0.238a

    Positive 8 16.5 (4.9) 8 201.0 (62.4)
    Negative 38 12.6 (5.0) 38 171.7 (63.1)
APOE, apolipoprotein E gene; CDR, Clinical Dementia Rating; GFAP, glial fibrillary acidic protein; PET, positron emission tomography; p-tau181, phosphorylated tau at 
threonine 181; SD, standard deviation; n=289, a Equal variance two sample t-test;.b ANOVA F-test; c Unequal variance two sample t-test.
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Exploratory analysis according to plasma 
p-tau181 status

Exploratory analyses according to plasma p-tau181 
status also found no effect of intervention on plasma 
p-tau181 and GFAP over 1-year, independently of 
p-tau status as baseline (difference in between-group 
differences over time for high vs. low: p-tau181: 0.81pg/
mL, 95%CI: -1.74, 3.36; p=0.532; GFAP: -12.49 pg/mL, 
95%CI: -41.69, 16.72; p=0.401) (Table 6). Interestingly, 
significant 1-year increase in plasma p-tau181 was only 
observed among participants with high p-tau181 at 
baseline (Table 6).

Discussion

Our study found no effect of a 1-year supplementation 
with a nutritional blend on plasma p-tau181 and GFAP 
levels among community-dwelling older adults, with 

both plasma biomarkers significantly increasing in both 
groups at the end of follow-up. Analyses according to 
APOE ε4 status provided similar findings. Analyses 
stratifying subjects according to their p-tau181 status 
at baseline revealed that only those with high p-tau 
presented significant increase in plasma p-tau181 after 
1-year.

It is well understood that nutrition is a key factor 
affecting aging (35-37) and the development of 
neurodegenerative diseases (38-40). However, the 
influence of dietary factors on tau accumulation has 
not been largely explored so far. There are studies with 
animals pointing towards the beneficial role of nutrient 
supplementation. For example, in a study with amyloid 
precursor protein (APP) and presenilin 1 (PS1) double-
transgenic mice (a well-established AD mouse model), 
vitamin D supplementation for 20 weeks decreased the 
expression levels of cortical APP, tau and p-tau (41). In 
addition, a 9-month DHA supplementation in 3xTg-

Table 3. Comparison of baseline characteristics between participants of the Nolan Study with plasma p-tau181 
assessment (included in the present study) and participants not included
 
 

Total n = 362 Included n = 289 Excluded n = 73 p-value

mean (SD)* mean (SD)* mean (SD)*

Treatment group 0.938a

   Nutritional blend 180 (49.7%) 144 (49.8%) 36 (49.3%)
    Placebo 182 (50.3%) 145 (50.2%) 37 (50.7%)
Sex (female) 212 (58.6%) 163 (56.4%) 49 (67.1%) 0.097a

Age (years) 78.3 (4.8) 78.1 (4.7) 79.0 (5.1) 0.168b

Education (n = 361) 0.295a

    ≤ 7 years 32 (8.9%) 24 (8.3%) 8 (11.0%)
    8 to 9 years 61 (16.9%) 45 (15.6%) 16 (21.9%)
    ≥10 years 268 (74.2%) 219 (76.0%) 49 (67.1%)
Body mass index (kg/m²) 26.1 (4.0) 26.2 (4.0) 25.8 (4.2) 0.367b

APOE ε4 status (n = 341) 0.734a

    ε4 carrier 83 (24.3%) 68 (24.7%) 15 (22.7%)
    ε4 non-carrier 258 (75.7%) 207 (75.3%) 51 (77.3%)
CDR score 0.060a

    0 144 (39.8%) 122 (42.2%) 22 (30.1%)
    0.5 218 (60.2%) 167 (57.8%) 51 (69.9%)
APOE, apolipoprotein E gene; CDR, Clinical Dementia Rating; SD, standard deviation; *Except where indicated other. a Chi-Square test; b Equal variance two sample 
t-test.

Table 4. Mixed-effect linear regression analysis for change from baseline in plasma p-tau181 and GFAP according to 
intervention groups among non-demented, community-dwelling older adults
 
 

Estimated mean within-group change from baseline1 
(95% CI); P-value

Between-group difference over time 
(95% CI); P-value

Nutritional blend Placebo Nutritional blend vs. placebo

Plasma p-tau181 (pg/mL) (n=289) 1.60 (0.74, 2.47); 0.0003 1.34 (0.48, 2.19);0.002 0.27 (-0.95, 1.48); 0.665

Plasma GFAP (pg/mL) (n=283) 14.60 (4.73, 24.46); 0.004 17.88 (8.08, 27.68); 0.0004 -3.28 (-17.25, 10.69); 0.644
GFAP, glial fibrillary acidic protein; p-tau181, phosphorylated tau at threonine 181; 1Estimated with the mean at baseline.
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AD mice was shown to reduce intraneuronal tau 
accumulation (42). It should be noted, however, that these 
studies were performed in AD animal models, a different 
approach from our investigation (focused on prevention 
and on the potential action of supplementation prior to 
disease onset, which also might demand higher exposure 
time compared to treatment scenarios). In humans, 
RCT have provided mixed findings. A RCT offering a 
4-week high saturated fatty acid/glycemic index diet 
or a low SFA/GI diet for cognitively normal adults and 
adults with mild cognitive impairment (MCI) found 
that diets significantly modified CSF amino acid levels, 
and reported that such changes in amino acids were 
associated with changes in CSF tau and p-tau181 (43). 
On the other hand, a RCT investigating the effects of 
a 6-month supplementation with 2.3g/day of PUFAs 
on CSF biomarkers among AD patients found no effect 
of treatment on p-tau or t-tau (44). Other RCTs found 
no benefits of supplementation of single or combined 
nutrients or bioactive compounds (omega-3 PUFA (45); 
vitamin E, vitamin C, α-lipoic acid and coenzyme Q (46); 
copper (47); resveratrol (48)) on CSF t-tau and/or p-tau.

Multiple potential biological mechanisms are believed 
to be involved on this relationship between nutrients 
and tau accumulation (49). Vitamin E has been reported 
to prevent Aβ-induced tau phosphorylation both in vitro 
and in APP/PS1 transgenic mice, by inhibiting p38MAPK 
phosphorylation (50). Intraperitoneal injections 
containing trans retinoic acid (a vitamin A metabolite) 
were shown to reduce tau hyperphosphorylation 
by decreasing the activity of cyclin-dependent 
kinase 5 (CDK5 – a kinase involved in the abnormal 
phosphorylation of tau), in a study with APP/PS1 

mice (51). Moreover, it has been shown that vitamin D 
reduced Aβ (25-35)-induced tau hyperphosphorylation 
through interplaying with glial cell line-derived 
neurotrophic factor (GDNF) signaling in SH-SY5Y 
cells (52). In accordance, Wu et al. (53) have recently 
shown that the activation of vitamin D receptor (VDR) 
reduced tau phosphorylation by inhibiting the GSK3β 
phosphorylation (Tyr216) in APP/PS1 mice. All such 
findings highlight the importance of further exploring 
how nutrition may contribute to fight tauopathies.

The evaluation of plasma GFAP in the present study 
brings additional elements to our investigation. GFAP 
is recognized as a marker of astrocyte reactivity (also 
known as astrocytosis or astrogliosis), a pathological 
process that is commonly found surrounding Aβ plaques 
in the brain of patients with AD (54). These activated glial 
cells are believed to be a defensive mechanism to fight 
amyloidosis, but when persistent, are pro-inflammatory 
and contribute to the worsening of AD progression 
(54). Therefore, the increasing of GFAP over time is 
associated with unhealthy prognosis (30–33). Our 1-year 
supplementation with the nutritional blend, however, 
did not mitigate the increase in plasma GFAP over time. 
Investigations on the effects of nutrient supplementation 
on GFAP are still scarce in literature, but there is evidence 
linking vitamin D (55) and EPA (56) supplementation 
with inhibition of glial activation in rodents. Future 
studies on the topic are hence encouraged.

Known as a strong genetic risk factor for the 
development of AD (34), the presence of the allele ε4 in 
the APOE gene importantly affects several metabolic 
pathways, including impaired cerebral glucose 
metabolism, altered microglia function (promoting 

Table 5. Mixed-effect linear regression analysis for change from baseline in plasma p-tau181 according to intervention 
groups and APOE ε4 status among non-demented, community-dwelling older adults
 
 
 

Estimated mean within-group change from baseline1 
(95% CI); P-value

Between-group difference over time (95% 
CI); P-value

Difference in 
between-group 
differences over 
time for APOE 

ε4 carrier vs. 
non-carrier

Nutritional blend Placebo Nutritional blend vs. placebo

APOE ε4 non-carrier APOE ε4 carrier2 APOE ε4 non-carrier APOE ε4 carrier2 APOE ε4 non-carrier APOE ε4 carrier2

Plasma p-tau181 (pg/mL) 
(n=275)

1.17 (0.17, 2.16); 
0.021

3.54 (1.67, 5.42); 
0.0002

1.46 (0.43, 2.49); 
0.006

1.56 (-0.09, 3.21); 
0.063

 -0.30 (-1.73, 1.14); 
0.684

1.98 (-0.50, 4.46);
 0.117

2.28 (-0.58, 5.13); 
0.118

Plasma GFAP (pg/mL) 
(n=270)

13.92 (2.88, 24.96); 
0.014

18.11 (-2.30, 38.52); 
0.082

15.11 (3.66, 26.56); 
0.010

16.13 (-1.87, 34.14); 
0.079

-1.19 (-17.17, 14.79); 
0.884

1.97 (-25.29, 29.23); 
0.887

3.16 (-28.24, 34.56); 
0.843

GFAP, glial fibrillary acidic protein; p-tau181, phosphorylated tau at threonine 181; 1Estimated with the mean at baseline; 2Defined as presenting at least one ε4 allele.

Table 6. Mixed-effect linear regression analysis for change from baseline in plasma p-tau181 according to intervention 
groups and plasma p-tau181 status among non-demented, community-dwelling older adults
 
 
 

Estimated mean within-group change from baseline1 
(95% CI); P-value

Between-group difference over time 
(95% CI); P-value

Difference in between-
group differences over 

time for high vs. low p-tau
Nutritional blend Placebo Nutritional blend vs. placebo

Low p-tau2 High p-tau3 Low p-tau2 High p-tau3 Low p-tau2 High p-tau3

Plasma p-tau181 (pg/
mL) (n=289)

0.77 (-0.41, 1.95); 
0.202

3.22 (1.43, 5.02); 
0.001

0.77 (-0.37, 1.92); 
0.184

2.42 (0.63, 4.21); 
0.008

0.00 (-1.48, 1.47); 
0.995

0.81 (-1.27, 2.88); 
0.446

0.81 (-1.74, 3.36); 0.532

Plasma GFAP (pg/
mL) (n=283)

12.57 (0.41, 24.74); 
0.043

18.62 (1.38, 35.86); 
0.034

11.68 (-0.28, 23.63); 
0.056

30.21 (13.01, 47.42); 
0.001

0.90 (-15.99, 17.78); 
0.917

-11.59 (-35.58, 12.39); 
0.342

-12.49 (-41.69, 16.72); 0.401

GFAP, glial fibrillary acidic protein; p-tau181, phosphorylated tau at threonine 181; 1Estimated with the mean at baseline; 2Defined as the two first tertiles (<15.1 pg/mL); 3Defined as the third tertile 
(≥15.1 pg/mL).
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increased tau pathology), decreased cerebral blood flow 
and impaired ability of astrocytes to synthesize and 
secrete cholesterol (57). For this reason, people carrying 
the APOE ε4 allele are believed to benefit from specific 
nutritional recommendations, as higher DHA, vitamin 
D and B-vitamins intake, no alcohol consumption (57), 
lower saturated fat intake and the adherence to the 
Mediterranean dietary pattern (58). However, additional 
research offering high-level evidence is still needed 
before the consensual establishment of adapted dietary 
recommendations for heterozygous and homozygous 
APOE ε4 carriers. Despite all the metabolic particularities 
triggered by the APOE ε4 allele, we found no differences 
from main findings when analyses were separately 
performed according to APOE ε4 status. Neither did 
Yassine et al. (59) when evaluating DHA supplementation 
on CSF tau and p-tau levels among individuals with 
probable AD.

Although the supplementation tested in the present 
trial was able to improve omega-3 index and to reduce 
plasma Hcy levels (17), its 1-year duration may have 
been insufficient to affect plasma p-tau181 and GFAP, 
as also the given doses of each nutrient or compound. 
The fact that participants of the study were generally 
healthy individuals may also have exacerbated this 
relatively short follow-up. To our knowledge, the present 
study is the first to test the effect of a multi-nutrient 
supplementation on plasma p-tau181 levels, a biomarker 
that reflects amyloid and tau protein deposition in 
the brain (25, 60, 61), and is advantageous compared 
to CSF and brain measurements due to its lower costs 
and complexity. The randomized, controlled design of 
the study stands as one of its strengths. On the other 
hand, the fact that other p-tau variants (as p-tau217 and 
p-tau231) were not assessed in our study may be noted 
as a limitation. As other limitations, we must consider the 
relatively short duration of intervention, and the missing 
data for some of the study variables, especially amyloid 
status assessed by PET scan. The choice of the threshold 
of p-tau181 status for the exploratory analysis (based on 
tertiles, once there are no validated established cutoffs 
so far) should be also noted. Moreover, most participants 
of the Nolan Study presented high educational level, so 
caution is needed to avoid generalizing the results to 
other populations.

Conclusions

In this study, we observed a 1-year increase in 
plasma p-tau181 and GFAP levels among community-
dwelling older adults that was not different between 
subjects receiving supplementation with a nutritional 
blend composed of several vitamins and minerals or 
those receiving placebo. Considering the novelty of the 
hypothesis tested in the present study, additional RCT 
with longer follow-ups and including other p-tau and 
astrocytosis biomarkers are needed, and may contribute 

to a better understanding if (and how) nutritional 
supplementation may be able to protect brain health and 
cognitive function through impacting tau accumulation, 
amyloidosis and glial activation. Additional research 
would also shed light on the identification of subgroups 
to whom specific nutritional supplementation may be 
more effective. Together with other advances in the field 
targeting lifestyle approaches, this would enable not 
only setting nutritional strategies for optimizing brain 
health and preventing or slowing the development of 
neurodegenerative diseases, but also to reduce the need of 
drugs and expensive treatments.
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